API 653 TANK INSPECTION, TANK MAINTENANCE, AND CAUSES OF TANK FAILURE

API 653 Tank Inspections

Why Inspect Your Tanks?

- Prevent leaks into your secondary containment or to groundwater (if you do not have a secondary containment system)
- Establish a baseline of tank condition and corrosion rates
- Identify problems to perform repairs before you have a significant leak or release - Maintain your capital asset
- Minimize chance of catastrophic tank failure

PROPER INSPECTION PROTOCOL

INSPECTOR CREDENTIALS

- Certified API 653 Inspector
 - > Four years minimum experience with storage tanks
 - Must pass test conducted by American Petroleum Institute (API)
 - >Inspectors receive an individual inspector number
 - > Inspector testing required every three years

PROPER INSPECTION PROTOCOL

- Visual inspection of welds, plates, and appurtenances
- UT (Ultra-sonic Thickness) testing of shell courses, floor, and roof
- Vacuum testing of all floor weld seams unless epoxy coated
- Identify bottom side corrosion on floors
- Settlement Survey
 - Checking for planar tilt
 - Check for floor bulges or depressions
- Provide calculations for safe or maximum fill height

Plate corrosion

Weld deterioration

Interior piping corrosion

Shell corrosion

Weld deterioration and four-way junction – NON API

Four-corner insert with reinforcing backup – NON API

Foundation evaluation

Floor plate corrosion

Lap-welded seam leak

Floor top side corrosion

Severe roof corrosion

Star light . . . Star bright!

	SHELL SETTELMENT SURVEY Date							
File No	Report No	Client	Inspector	Tank No	1st Crs Plt Spec			
7	HTS-10-221		Doug Perry	#1	Unknown			

S <= 11L^2Y/2EH

- $\begin{array}{l} U = Measured \mbox{ out-of-plane settlement in relation to a cosine curve, in feet} \\ S = Deflection, in feet, (out-of-plane distortion) \\ L = Arc length between measurement points, in feet \end{array}$

- Y = Yield strength, in pounds per square inch (psi) E Young's modulus, in pounds per square inch (psi)
- H = Tank height, in feet

D 52 2	L 20.42	Y 30000	E 29000	ا 000 3	H s 1.5	- Max Perm 0.075	hissible
	Feet	Inches	Feet	U	S	Results	High Point
Point 1	3	9.000	3.75	0.000	0.002	SAT	3.75 Ft
Point 2	3	9.200	3.77	0.007	0.000	SAT	Lour Doint
Point 3	3	9.400	3.78	0.014	-0.001	SAT	Low Point
Point 4	3	9.600	3.80	0.022	0.016	SAT	3.80 Ft
Point 5	3	9.400	3.78	-0.002	-0.009	SAT	
Point 6	3	9.400	3.78	-0.008	0.008	SAT	Planar Tilt
Point 7	3	9.200	3.77	-0.030	-0.010	SAT	0.05 Ft
Point 8	3	9.200	3.77	-0.032	0.008	SAT	
Point 9	3	9.000	3.75	-0.050	-0.010	SAT	0.60 In.
Point 10	3	9.000	3.75	-0.049	-0.024	SAT	
Point 11	3	9.000	3.75	-0.046	-0.009	SAT	Cosine Curve R^2
Point 12	3	9.200	3.77	-0.025	0.008	SAT	0.24
Point 13	3	9.200	3.77	-0.019	-0.010	SAT	
Point 14	3	9.400	3.78	0.006	0.017	SAT	
Point 15	3	9.200	3.77	-0.002	0.000	SAT	
Point 16	3	9.000	3.75	-0.010	-0.009	SAT	

Notes:

Sixteen equally spaced settlement measurements were performed around the outside circumference of the tank at the floor plate that sticks out beyond the shell.

API-653	8/7/2010				
Report No	Client	Inspector	Tank No	1st Crs Plt Spec	
HTS-10-155		Richard Buntt	#17	A 36M	

API-653 STORAGE TANK EVALUATION

AST Component Inspection Data

Report No	Client	Inspector	Vessel	Date
HTS-10			#2	

Component Thickness Measurements (in inches)

_	CML	Component	Location	tml-1	tml-2	tml-3	tml-4	tml-5	tml-6	Minimum
	001	Shell Crs 1	Plt1	0.342	0.345	0.334	0.336	0.345	0.335	0.334
	002	Shell Crs 1	Plt2	0.340	0.328	0.350	0.357	0.333	0.371	0.328
Γ	003	Shell Crs 1	Plt3	0.323	0.337	0.325	0.316	0.323	0.332	0.316
	004	Shell Crs 1	Plt4	0.327	0.364	0.355	0.361	0.325	0.366	0.325
ſ	005	Shell Crs 1	Plt5	0.334	0.348	0.344	0.363	0.340	0.373	0.334
ſ	006	Shell Crs 1	Plt6	0.352	0.355	0.358	0.359	0.350	0.347	0.347
	007	Shell Crs 2	Plt1	0.221	0.282	0.247	0.218	0.226	0.243	0.218
	800	Shell Crs 2	Plt2	0.224	0.231	0.226	0.229	0.222	0.256	0.222
	009	Shell Crs 2	Plt3	0.219	0.224	0.229	0.220	0.218	0.270	0.218
	010	Shell Crs 2	Plt4	0.213	0.233	0.209	0.252	0.207	0.252	0.207
	011	Shell Crs 2	Plt5	0.214	0.266	0.248	0.226	0.227	0.250	0.214
ſ	012	Shell Crs 2	Plt6	0.251	0.233	0.223	0.253	0.223	0.273	0.223
ſ	013	Shell Crs 3	Plt1 N.	0.212	0.204	0.195				0.195
ſ	014	Shell Crs 3	Plt2 S.	0.210	0.205	0.204				0.204
	015	Shell Crs 3	Plt3 E.	0.189	0.185	0.183				0.183
	016	Shell Crs 3	Plt4 W.	0.211	0.204	0.207				0.204
ſ	017	Shell Crs 4	Plt1 N.	0.196	0.217	0.194				0.194
ſ	018	Shell Crs 3	Plt2 S.	0.203	0.200	0.212				0.200
	019	Shell Crs 4	Plt3 E.	0.189	0.190	0.195				0.189
ſ	020	Shell Crs 4	Plt4 W.	0.189	0.183	0.187				0.183
	021	Roof	Plt1	0.213						0.213
ſ	022	Roof	Plt2	0.185						0.185
ſ	023	Roof	Plt3	0.186						0.186

TANK INSPECTIONS ARE NOT ALWAYS A BAD THING

THIS IS A HAPPY TANK

TANK MAINTENANCE – COMMON SENSE APPROACH

- Conduct monthly/weekly walk-around of your tank(s)
 - Look for stains on steel where leak may be occurring
 - Check valve function and nozzle welds
 - Check associated piping
 - Check foundation for wash-out/deterioration
- Keep good records of product in and out

TANK MAINTENANCE – COMMON SENSE APPROACH

- Open up your tank a minimum of every two years and conduct your own visual inspection inside
 - Check for weld deterioration and corrosion
 - If tank is coated, visually check coating for blisters or cracks
- Keep a record of inspections and results
- If tank has an internal containment liner, check leak monitor weekly
- Conduct an API-653 inspection of your tank every five years as recommended by TFI (The Fertilizer Institute)

Salting out of liquid fertilizer in lined tank

WHAT IS THE API 650 SPECIFICATION

API - AMERICAN PETROLEUM INSTITUTE

Worldwide Standard for Above Ground Storage Tank Design and Construction

- Provides requirements for calculations of shell plate thickness, man-way and nozzle design
- Provides procedures for shell, roof and floor construction
- Specifies material requirements and minimum thickness requirements
- Specifies weld construction requirements, weld spacing, and x-ray requirements

CAUSES OF CATASTROPHIC TANK FAILURE

TANK FAILURES – COMMON CAUSES

- #1 Cause: Corrosion
 - Weld deterioration/corrosion especially in lower horizontal and vertical seams
- #2 Cause Lack of Weld Penetration
 - >Lack of full weld penetrations (lack of weld fusion)
 - Improper weld seam spacing
 - Lack of radiograph (x-ray) of newly constructed tanks or on repaired tanks

TANK FAILURES – COMMON CAUSES

- # 3 Other Causes
 - ➤Operational errors
 - Over-filling of tank excessive pressure
 - Brittle fracture of steel
 - ➢Poorly designed or inappropriately installed
 - Lack of proper certified inspection
 - Tank erectors who know little about API Specifications and procedures – these companies attract customers with a "cheap" price. Make certain your contractor can verify that your tank meets API Specifications. DO YOUR OWN HOMEWORK

Double wall 500,000 gallon tank, Illinois 2008

Original tank foundation

